Meenakshi’s work on hopping transport in organic thermoelectrics published in Scientific Reports

Meenakshi’s work, in collaboration with Prof. Venkataraman’s ALIEN group in UMass Chemistry, studies how to leverage disorder in amorphous organic materials such as polymers to improve their thermoelectric performance. The paper is open access and free to read via Scientific Reports:

Cameron’s work on thermal boundary conductance published in 2D Materials

Cameron’s research on the thermal boundary conductance between monolayers of 2-dimensional materials and 3D substrates has been published in IOP’s journal 2D Materials (link here: ). In it, we show that the TBC is driven by the vibrational densities of states of the two materials and we identify trends in materials properties as well as the ideal substrate for each 2D layer. Amorphous substrates generally fare better than crystalline because of the so-called “boson peak” of excess low-frequency vibrational modes, which matches well with the flexural phonons in 2D materials.

Cameron’s work explaining the effect of encapsulation on the thermal boundary conductance published in Advanced Materials

In collaboration with the Salehi-Khojin group at UIC, we studied the effect of encapsulation on the thermal boundary conductance (TBC) between few-layer MXene (Ti3C2) and the substrate. Cameron’s first-principles simulations explain that encapsulating the MXene with amorphous AlOx nearly doubles the TBC to the substrate because the encapsulation dampens the long-wavelength flexural phonon modes that are responsible for most of the 2D-3D heat transfer. The work has been accepted for publication in the prestigious Advanced Materials (impact factor ~22):

Arnab’s article on dynamical thermal conductivity in graphene published in Phys Rev B

Our recent work on the dynamical thermal conductivity in graphene nanoribbons shows that frequency-dependent thermal transport arises in the hydrodynamic regime. Thermal conductivity resembles a low-pass filter while the normal and resistive components of the heat flux are out of phase with each other. The work is now published in Physical Review B:

Our collaboration with UIC on heat dissipation in WSe2 published in ACS Applied Materials and Interfaces

Our recent work aimed at understanding the heat dissipation, thermal boundary conductance, and Raman spectra in the transition metal dichalcogenide WSe2, done in collaboration with Selehi-Kkhojin’s group at UIC, has been published in ACS Applied Materials and Interfaces. Congratulations Arnab and Cameron, who contributed theory and first-principles simulation of the decay paths of Raman active optical phonons and the thermal boundary conductance between multi-layer WSe2 and the substrate.

Full paper available here:

Prof. Aksamija Comments in Prominent Science News Magazine

Prof. Zlatan Aksamija was recently quoted in a Science News story about why scientists are studying how 2-D materials such as graphene behave at high temperatures. In the February 13 edition of Science NewsAksamija said that commonly used silicon-based electronics are “hitting a brick wall” regarding how much smaller they can be manufactured, and that 2-D materials could be ideal for constructing the next generation of tiny devices:

Our vdW-TBC paper included in Nanotechnology Highlights of 2017

Cameron and NETlab alum Ela’s work on the thermal boundary conductance between van der Waals atomic layers and substrates, with impact on device applications on graphene, MoS2 and related materials, was included in Highlights of 2017, section on Energy at the Nanoscale

Our article will be free to read throughout 2018, offering unlimited access to the work.